Defects in Hybrid Perovskites: The Secret of Efficient Charge Transport

dc.contributor.authorMusiienko, Artemcs
dc.contributor.authorCeratti, Davide Raffaelecs
dc.contributor.authorPipek, Jindřichcs
dc.contributor.authorBrynza, Mykolacs
dc.contributor.authorElhadidy, Hassancs
dc.contributor.authorBelas, Eduardcs
dc.contributor.authorBetušiak, Mariáncs
dc.contributor.authorDelport, Geraudcs
dc.contributor.authorPraus, Petrcs
dc.coverage.issue48cs
dc.coverage.volume31cs
dc.date.accessioned2021-12-06T06:55:41Z
dc.date.available2021-12-06T06:55:41Z
dc.date.issued2021-09-01cs
dc.description.abstractThe interaction of free carriers with defects and some critical defect properties are still unclear in methylammonium lead halide perovskites (MHPs). Here, a multi-method approach is used to quantify and characterize defects in single crystal MAPbI(3), giving a cross-checked overview of their properties. Time of flight current waveform spectroscopy reveals the interaction of carriers with five shallow and deep defects. Photo-Hall and thermoelectric effect spectroscopy assess the defect density, cross-section, and relative (to the valence band) energy. The detailed reconstruction of free carrier relaxation through Monte Carlo simulation allows for quantifying the lifetime, mobility, and diffusion length of holes and electrons separately. Here, it is demonstrated that the dominant part of defects releases free carriers after trapping; this happens without non-radiative recombination with consequent positive effects on the photoconversion and charge transport properties. On the other hand, shallow traps decrease drift mobility sensibly. The results are the key for the optimization of the charge transport properties and defects in MHP and contribute to the research aiming to improve perovskite stability. This study paves the way for doping and defect control, enhancing the scalability of perovskite devices with large diffusion lengths and lifetimes.en
dc.formattextcs
dc.format.extent1-13cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationAdvanced Materials for Optics and Electronics. 2021, vol. 31, issue 48, p. 1-13.en
dc.identifier.doi10.1002/adfm.202104467cs
dc.identifier.issn1616-3028cs
dc.identifier.other172925cs
dc.identifier.urihttp://hdl.handle.net/11012/203057
dc.language.isoencs
dc.publisherWILEY-VCHcs
dc.relation.ispartofAdvanced Materials for Optics and Electronicscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202104467cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1616-3028/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectcharge transporten
dc.subjectdefectsen
dc.subjecthalide perovskitesen
dc.subjectnature of defectsen
dc.subjectperovskitesen
dc.subjectperovskites stabilityen
dc.subjectsolar cellsen
dc.titleDefects in Hybrid Perovskites: The Secret of Efficient Charge Transporten
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-172925en
sync.item.dbtypeVAVen
sync.item.insts2021.12.07 16:54:08en
sync.item.modts2021.12.07 16:14:22en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Magneto-Optická a THz Spektroskopiecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
adfm.202104467.pdf
Size:
2 MB
Format:
Adobe Portable Document Format
Description:
adfm.202104467.pdf