Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing

dc.contributor.authorKupka, Vojtěchcs
dc.contributor.authorDvořáková, Evacs
dc.contributor.authorManakhov, Antoncs
dc.contributor.authorMichlíček, Miroslavcs
dc.contributor.authorPetruš, Josefcs
dc.contributor.authorVojtová, Lucycs
dc.contributor.authorZajíčková, Lenkacs
dc.coverage.issue6cs
dc.coverage.volume12cs
dc.date.accessioned2020-12-01T15:55:38Z
dc.date.available2020-12-01T15:55:38Z
dc.date.issued2020-06-22cs
dc.description.abstractBiodegradable composite nanofibers were electrospun from poly(epsilon-caprolactone) (PCL) and poly(ethylene oxide) (PEO) mixtures dissolved in acetic and formic acids. The variation of PCL:PEO concentration in the polymer blend, from 5:95 to 75:25, revealed the tunability of the hydrolytic stability and mechanical properties of the nanofibrous mats. The degradation rate of PCL/PEO nanofibers can be increased compared to pure PCL, and the mechanical properties can be improved compared to pure PEO. Although PCL and PEO have been previously reported as immiscible, the electrospinning into nanofibers having restricted dimensions (250-450 nm) led to a microscopically mixed PCL/PEO blend. However, the hydrolytic stability and tensile tests revealed the segregation of PCL into few-nanometers-thin fibrils in the PEO matrix of each nanofiber. A synergy phenomenon of increased stiffness appeared for the high concentration of PCL in PCL/PEO nanofibrous mats. The pure PCL and PEO mats had a Young's modulus of about 12 MPa, but the mats made of high concentration PCL in PCL/PEO solution exhibited 2.5-fold higher values. The increase in the PEO content led to faster degradation of mats in water and up to a 20-fold decrease in the nanofibers' ductility. The surface of the PCL/PEO nanofibers was functionalized by an amine plasma polymer thin film that is known to increase the hydrophilicity and attach proteins efficiently to the surface. The combination of different PCL/PEO blends and amine plasma polymer coating enabled us to tune the surface functionality, the hydrolytic stability, and the mechanical properties of biodegradable nanofibrous mats.en
dc.formattextcs
dc.format.extent1-16cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPolymers. 2020, vol. 12, issue 6, p. 1-16.en
dc.identifier.doi10.3390/polym12061403cs
dc.identifier.issn2073-4360cs
dc.identifier.other165166cs
dc.identifier.urihttp://hdl.handle.net/11012/195729
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofPolymerscs
dc.relation.urihttps://www.mdpi.com/2073-4360/12/6/1403cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-4360/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectpolymer fibersen
dc.subjectthin filmsen
dc.subjectplasma enhanced CVDen
dc.subjectmechanical propertiesen
dc.subjectSEMen
dc.titleWell-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processingen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-165166en
sync.item.dbtypeVAVen
sync.item.insts2020.12.01 16:55:36en
sync.item.modts2020.12.01 16:14:22en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé biomateriálycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav teoretické a experimentální elektrotechnikycs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé nízkodimenzionální nanomateriálycs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers1201403v2.pdf
Size:
4.74 MB
Format:
Adobe Portable Document Format
Description:
polymers1201403v2.pdf