Organic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approach

dc.contributor.authorKochergin, Yaroslav S.cs
dc.contributor.authorMohsen Beladi, Mousavics
dc.contributor.authorKhezri, Baharehcs
dc.contributor.authorLyu, Pengbocs
dc.contributor.authorBojdys, Michael J.cs
dc.contributor.authorPumera, Martincs
dc.coverage.issue11cs
dc.coverage.volume9cs
dc.date.accessioned2021-08-13T10:52:55Z
dc.date.available2021-08-13T10:52:55Z
dc.date.issued2021-03-21cs
dc.description.abstractConventional photoelectrocatalysts composed of precious metals and inorganic elements have limited synthetic design, hence, hampered modularity of their photophysical properties. Here, we demonstrate a scalable, one-pot synthetic approach to grow organic polymer films on the surface of the conventional copper plate under mild conditions. Molecular precursors, containing electron-rich thiophene and electron-deficient triazine-rings, were combined into a donor-acceptor pi-conjugated polymer with a broad visible light adsorption range due to a narrow bandgap of 1.42 eV. The strong charge push-pull effect enabled the fabricated donor-acceptor material to have a marked activity as an electrode in a photoelectrochemical cell, reaching anodic photocurrent density of 6.8 mu A cm(-2) (at 0.6 V vs. Ag/AgCl, pH 7). This value is 3 times higher than that of the model donor-donor thiophene-only-based polymer and twice as high as that of the analogue synthesized in bulk using the heterogenous CuCl catalyst. In addition, the fabricated photoanode showed a 2-fold increase in the photoelectrocatalytic oxygen evolution from water upon simulated sunlight irradiation with the photocurrent density up to 4.8 mA cm(-2) (at 1.0 V vs. Ag/AgCl, pH 14). The proposed engineering strategy opens new pathways toward the fabrication of efficient organic "green" materials for photoelectrocatalytic solar energy conversion.en
dc.formattextcs
dc.format.extent7162-7171cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Materials Chemistry A. 2021, vol. 9, issue 11, p. 7162-7171.en
dc.identifier.doi10.1039/d0ta11820fcs
dc.identifier.issn2050-7488cs
dc.identifier.other171769cs
dc.identifier.urihttp://hdl.handle.net/11012/200988
dc.language.isoencs
dc.publisherRoyal Society of Chemistrycs
dc.relation.ispartofJournal of Materials Chemistry Acs
dc.relation.urihttps://pubs.rsc.org/en/content/articlelanding/2021/TA/D0TA11820F#!divAbstractcs
dc.rightsCreative Commons Attribution 3.0 Unportedcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2050-7488/cs
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/cs
dc.subjectphotoelectrode engineeringen
dc.titleOrganic photoelectrode engineering: accelerating photocurrent generation via donor-acceptor interactions and surface-assisted synthetic approachen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-171769en
sync.item.dbtypeVAVen
sync.item.insts2021.08.13 12:52:55en
sync.item.modts2021.08.13 12:14:16en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Energie budoucnosti a inovacecs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
d0ta11820f.pdf
Size:
799.3 KB
Format:
Adobe Portable Document Format
Description:
d0ta11820f.pdf