Plasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High-Frequency Electron Paramagnetic Resonance

dc.contributor.authorTesi, Lorenzocs
dc.contributor.authorBloos, Dominikcs
dc.contributor.authorHrtoň, Martincs
dc.contributor.authorBeneš, Adamcs
dc.contributor.authorHentschel, Mariocs
dc.contributor.authorKern, Michalcs
dc.contributor.authorLeavesley, Alisacs
dc.contributor.authorHillenbrand, Rainercs
dc.contributor.authorKřápek, Vlastimilcs
dc.contributor.authorŠikola, Tomášcs
dc.contributor.authorvan Slageren, Joriscs
dc.coverage.issue9cs
dc.coverage.volume5cs
dc.date.accessioned2021-12-06T11:51:00Z
dc.date.available2021-12-06T11:51:00Z
dc.date.issued2021-09-15cs
dc.description.abstractNanoscale magnetic systems play a decisive role in areas ranging from biology to spintronics. Although, in principle, THz electron paramagnetic resonance (EPR) provides high-resolution access to their properties, lack of sensitivity has precluded realizing this potential. To resolve this issue, the principle of plasmonic enhancement of electromagnetic fields that is used in electric dipole spectroscopies with great success is exploited, and a new type of resonators for the enhancement of THz magnetic fields in a microscopic volume is proposed. A resonator composed of an array of diabolo antennas with a back-reflecting mirror is designed and fabricated. Simulations and THz EPR measurements demonstrate a 30-fold signal increase for thin film samples. This enhancement factor increases to a theoretical value of 7500 for samples confined to the active region of the antennas. These findings open the door to the elucidation of fundamental processes in nanoscale samples, including junctions in spintronic devices or biological membranes.en
dc.formattextcs
dc.format.extent2100376-2100376cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationSmall Methods. 2021, vol. 5, issue 9, p. 2100376-2100376.en
dc.identifier.doi10.1002/smtd.202100376cs
dc.identifier.issn2366-9608cs
dc.identifier.other173117cs
dc.identifier.urihttp://hdl.handle.net/11012/203066
dc.language.isoencs
dc.publisherWiley-VCHcs
dc.relation.ispartofSmall Methodscs
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/smtd.202100376cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2366-9608/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subject2D resonatorsen
dc.subjectelectron paramagnetic resonanceen
dc.subjectnanostructuresen
dc.subjectplasmonic metasurfacesen
dc.subjectself-assembled monolayersen
dc.subjectspintronicsen
dc.subjectthin layersen
dc.titlePlasmonic Metasurface Resonators to Enhance Terahertz Magnetic Fields for High-Frequency Electron Paramagnetic Resonanceen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-173117en
sync.item.dbtypeVAVen
sync.item.insts2021.12.09 20:53:57en
sync.item.modts2021.12.09 20:14:10en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Příprava a charakterizace nanostrukturcs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav fyzikálního inženýrstvícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
smtd.202100376.pdf
Size:
2.09 MB
Format:
Adobe Portable Document Format
Description:
smtd.202100376.pdf