Non-linear dynamic finite element analysis of micro-strut lattice structures made by laser powder bed fusion

dc.contributor.authorČervinek, Ondřejcs
dc.contributor.authorPettermann, Heinzcs
dc.contributor.authorTodt, Melaniecs
dc.contributor.authorKoutný, Danielcs
dc.contributor.authorVaverka, Ondřejcs
dc.coverage.issue1cs
dc.coverage.volume18cs
dc.date.accessioned2022-05-11T10:52:09Z
dc.date.available2022-05-11T10:52:09Z
dc.date.issued2022-04-15cs
dc.description.abstractThe development of additive manufacturing technologies enables the production of a new type of porous materials for the absorption of mechanical energy. These are, for example, metallic lattice structures produced by laser powder bed fusion. The structures can be made from a wide range of alloys, achieve high specific energy absorption, and can be manufactured as hybrid parts with conventional bulk components. To effectively develop lattice structures, it is necessary to complement experimental tests with simulations using the finite element method (FEM) performed under conditions of increased loading velocities. Therefore, this study focuses on the development of the FEM modelling strategy that reflects the effect of strain rate sensitivity of the base material (SS316L) and the most significant geometrical imperfections of the manufacturing process. The strain rate is reflected by the Cowper-Symonds constitutive law, which parameters are determined by the dynamic tensile test on Hopkinson split bars. The imperfections are captured by optical digitalization. The significance of the Cowper-Symonds parameters and geometric imperfections are studied independently, whereas agreement with the experiment is observed. Tests are performed for several lattice structures with different strut orientations and velocities to evaluate the versatility of the proposed approaches. A good correlation between computational and experimental results in terms of energy absorption is found for structures with an experimentally determined strut diameter and the proposed Cowper-Symonds input parameters.en
dc.formattextcs
dc.format.extent3684-3699cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationJournal of Materials Research and Technology. 2022, vol. 18, issue 1, p. 3684-3699.en
dc.identifier.doi10.1016/j.jmrt.2022.04.051cs
dc.identifier.issn2238-7854cs
dc.identifier.other177789cs
dc.identifier.urihttp://hdl.handle.net/11012/204212
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofJournal of Materials Research and Technologycs
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2238785422005518cs
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2238-7854/cs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectLaser powder bed fusionen
dc.subjectLattice structureen
dc.subjectSplit hopkinson bars testen
dc.subjectImpact testen
dc.subjectDynamic loadingen
dc.subjectFinite element analysisen
dc.titleNon-linear dynamic finite element analysis of micro-strut lattice structures made by laser powder bed fusionen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177789en
sync.item.dbtypeVAVen
sync.item.insts2023.02.08 16:53:39en
sync.item.modts2023.02.08 16:16:29en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav konstruovánícs
thesis.grantorVysoké učení technické v Brně. . Technische Universität Wiencs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1s2.0S2238785422005518main.pdf
Size:
5.53 MB
Format:
Adobe Portable Document Format
Description:
1s2.0S2238785422005518main.pdf