Show simple item record

Geopolymers Incorporating Wastes and Composites Processing

dc.contributor.advisorDlouhý, Ivoen
dc.contributor.authorTaveri, Gianmarcoen
dc.date.accessioned2019-10-04T10:55:51Z
dc.date.available2019-10-04T10:55:51Z
dc.date.created2019cs
dc.identifier.citationTAVERI, G. Geopolymers Incorporating Wastes and Composites Processing [online]. Brno: Vysoké učení technické v Brně. Fakulta strojního inženýrství. 2019.cs
dc.identifier.other113904cs
dc.identifier.urihttp://hdl.handle.net/11012/180701
dc.description.abstractBuildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).en
dc.description.abstractBuildings construction and realization of public infrastructures have always been a primary need in the human society, developing low cost and user-friendly materials which also encounter safety and durability requirements. Portland cement is the most used material in construction industry from the industrial revolution up to date, but the raising concerns related to the climate change are pushing the governments worldwide to replace it with more eco-friendly and greener materials. Geopolymers are considered to be best alternatives to Portland cement in construction industry, but issues related to cost and mechanical properties are still hindering the commercialization of this material. Geopolymer incorporating wastes is one of the solutions. Fly ash, a thermal power plant by-product, and borosilicate glass, a recycled glass from pharmaceutical vials, are suitable candidates in geopolymers activation. NMR and FTIR spectroscopies demonstrated that borates from borosilicate glass are active compounds in geopolymerization, substituting the alumina is its role, composing a B-Al-Si network never observed before. Various fly ash and borosilicate glass weight contents were studied in terms of mechanical properties (compression test, 3-point bending test). It was found that fly ash 55 wt.% and borosilicate 45 wt.% composition activated in 13 M NaOH solution holds the best compressive and flexural strength (45 and 4 MPa respectively), 25% stronger than similar counterparts found in literature. Cellulose fibres in different weight contents were dispersed into the geopolymeric paste to produce geopolymer composites, with the aim to render the material more suitable for structural applications. 3-point bending test showed an improvement of the flexural strength of about 165% (12 MPa), while the chevron notch method displayed a fracture toughness of 0.7 MPam1/2, in line with the results of geopolymer composites found in literature. In this thesis work, fly ash was also successfully densified in 3 M NaOH solution and distilled water through a new method based on hydraulic pressure, called hydro-pressure sintering. This innovative technology involves a drastic reduction of NaOH utilization in geopolymerization, rendering the material more eco-friendly. XRD spectroscopy conducted on produced samples revealed a higher formation of crystals, most likely induced by the application of hydraulic pressure (450 MPa).cs
dc.language.isoencs
dc.publisherVysoké učení technické v Brně. Fakulta strojního inženýrstvícs
dc.rightsStandardní licenční smlouva - přístup k plnému textu bez omezenícs
dc.subjectGeopolymersen
dc.subjectpolycondensationen
dc.subjectcomposite materialsen
dc.subjectmechanical propertiesen
dc.subjectfracture toughnessen
dc.subjecthydro-pressure sinteringen
dc.subjectspectroscopy.en
dc.subjectGeopolymerscs
dc.subjectpolycondensationcs
dc.subjectcomposite materialscs
dc.subjectmechanical propertiescs
dc.subjectfracture toughnesscs
dc.subjecthydro-pressure sinteringcs
dc.subjectspectroscopy.cs
dc.titleGeopolymers Incorporating Wastes and Composites Processingen
dc.title.alternativeGeopolymers Incorporating Wastes and Composites Processingcs
dc.typeTextcs
dcterms.dateAccepted2019-08-19cs
dcterms.modified2019-10-04-10:40:35cs
thesis.disciplineFyzikální a materiálové inženýrstvícs
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Ústav materiálových věd a inženýrstvícs
thesis.levelDoktorskýcs
thesis.namePh.D.cs
sync.item.dbid113904en
sync.item.dbtypeZPen
sync.item.insts2020.05.12 04:57:08en
sync.item.modts2020.05.12 04:12:40en
eprints.affiliatedInstitution.facultyFakulta strojního inženýrstvícs
dc.contributor.refereePerná,, Ivanaen
dc.contributor.refereePouchlý, Václaven
dc.description.markPcs
dc.type.driverdoctoralThesisen
dc.type.evskpdizertační prácecs
but.committeeprof. RNDr. Karel Maca, Dr. (předseda) Ing. Ivana Perná, Ph.D. (člen) Ing. Václav Pouchlý, Ph.D., ING-PAED IGIP (člen) Ing. Hynek Hadraba, Ph.D. (člen) prof. Ing. Martin Trunec, Dr. (člen)cs
but.defenceUchazeč přednesl obhabjobu DDP ve stanoveném rozsahu a shrnul nejdůležitější výsledky a přínosy DDP. V následující diskusi uchazeč zodpověděl uspokojivě dotazy obou oponentů a následně členů oponentní komise. Komise zkonstatovala, že na základě proběhlého oponentního řízení uchazeč splnil všechny požadavky potřebné k obhajobě DDP.cs
but.resultpráce byla úspěšně obhájenacs
but.programFyzikální a materiálové inženýrstvícs
but.jazykangličtina (English)


Files in this item

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record