Crack propagation in mixed-mode specimens described via multi-parameter fracture mechanics

Loading...
Thumbnail Image
Date
2019-10-08
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
Altmetrics
Abstract
The main objective of the paper is to employ a multi-parameter fracture mechanics concept to describe crack propagation through a specimen loaded in mixed-mode. This concept in particular was used because it has been shown that application of the generalized fracture mechanics concept can play a key role for materials with specific fracture behaviour, i.e. when fracture processes occur not only in the very vicinity of the crack tip, but also at larger distances from it. Two mixed-mode (I+II) geometries for the investigation of crack behaviour are presented here. The Williams series expansion is used for crack-tip stress field approximation. Then, considering the higher-order terms of the Williams expansion with regard to maximum tangential stress criterion can provide better estimates of the crack deflection angle. The coefficients of the Williams expansion were determined by means of the over-deterministic method for the purposes of this work. This analysis was performed for each cracked configuration, which is very time-consuming and makes the analysis very extensive. The crack propagation angle obtained by means of the generalized fracture criterion is discussed in detail. It was found that single-parameter fracture mechanics is sufficient when applied close to the crack tip and when mode I of loading prevails, while multi-parameter fracture mechanics can be recommended at larger distances from the crack tip and for configurations where mode II becomes dominant.
Description
Citation
IOP Conference Series: Materials Science and Engineering. 2019, vol. 629, p. 1-5.
https://iopscience.iop.org/article/10.1088/1757-899X/629/1/012013
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 3.0 Unported
http://creativecommons.org/licenses/by/3.0/
Citace PRO