Deviations of the SLM produced Lattice Structures and Their Influence on Mechanical properties

Loading...
Thumbnail Image
Date
2022-04-26
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
Selective laser melting (SLM) is an additive manufacturing technology suitable for producing cellular lattice structures using fine metal powder and a laser beam. However, the shape and dimensional deviations occur on the thin struts during manufacturing, influencing the mechanical properties of the structure. There are attempts in the literature to describe the actual shape of the struts’ geometry, however, on a smaller data sample only, and there is a lack of a universal FEA material model applicable to a wider range of lattice structure diameters. To describe the actual dimensions of the struts, a set of lattice structures, with diameters ranging from 0.6 to 3.0 mm, were manufactured using SLM. These samples were digitized using micro-computed tomography (CT) and fully analyzed for shape and dimensions. The results show large deviations in diameters of inscribed and circumscribed cylinders, indicating an elliptical shape of the struts. With increasing lattice structure diameter, the deviations decreased. In terms of the effect of the shape and dimensions on the mechanical properties, the Gaussian cylinder was found to describe struts in the diameter range of 1.5 to 3.0 mm sufficiently well. For smaller diameters, it is appropriate to represent the actual cross-section by an ellipse. The use of substitute ellipses, in combination with the compression test results, has resulted in FEA material model that can be used for the 0.6 to 3.0 mm struts’ diameter range. The model has fixed Young’s and tangential modules for these diameters and is controlled only by the yield strength parameter (YST).
Description
Citation
Materials . 2022, vol. 15, issue 9, p. 1-20.
https://www.mdpi.com/1996-1944/15/9/3144
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO