Show simple item record

dc.contributor.authorElhadj, Z.
dc.date.accessioned2016-03-18T10:36:05Z
dc.date.available2016-03-18T10:36:05Z
dc.date.issued2008-04cs
dc.identifier.citationRadioengineering. 2008, vol. 17, č. 1, s. 9-13. ISSN 1210-2512cs
dc.identifier.issn1210-2512
dc.identifier.urihttp://hdl.handle.net/11012/57172
dc.description.abstractThis paper has reported the finding of a new simple three dimensional quadratic chaotic system with three nonlinearities obtained by adding a cross-product nonlinear term to the first equation of the Lu system. Basic properties of the system have been analyzed by means of Lyapunov exponent spectrum and bifurcation diagram of an associated Poincare map. This analysis shows that the system has complex dynamics with some interesting characteristics in which there are several periodic regions, but each of them has quite different periodic orbits. Shilnikov’s criterion is included and discussed.en
dc.formattextcs
dc.format.extent9-13cs
dc.format.mimetypeapplication/pdfen
dc.language.isoencs
dc.publisherSpolečnost pro radioelektronické inženýrstvícs
dc.relation.ispartofRadioengineeringcs
dc.relation.urihttp://www.radioeng.cz/fulltexts/2008/08_01_09_13.pdfcs
dc.rightsCreative Commons Attribution 3.0 Unported Licenseen
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/en
dc.subjectNew chaotic attractorsen
dc.subjectthree quadratic nonlinearitiesen
dc.subjectmodified Lu systemen
dc.subjectLyapunov exponent spectrumen
dc.subjectbifurcation diagramen
dc.subjectPoincare mapen
dc.titleAnalysis of a New Three-Dimensional Quadratic Chaotic Systemen
eprints.affiliatedInstitution.facultyFakulta eletrotechniky a komunikačních technologiícs
dc.coverage.issue1cs
dc.coverage.volume17cs
dc.rights.accessopenAccessen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 3.0 Unported License
Except where otherwise noted, this item's license is described as Creative Commons Attribution 3.0 Unported License