Exposure to 17 beta-Oestradiol Induces Oxidative Stress in the Non-Oestrogen Receptor Invertebrate Species Eisenia fetida

View/ Open
Date
2015-12-22Author
Altmetrics
10.1371/journal.pone.0145426
Metadata
Show full item recordAbstract
Background
The environmental impacts of various substances on all levels of organisms are under investigation. Among these substances, endocrine-disrupting compounds (EDCs) present a threat, although the environmental significance of these compounds remains largely unknown. To shed some light on this field, we assessed the effects of 17 beta-oestradiol on the growth, reproduction and formation of free radicals in Eisenia fetida.
Methodology/Principal Findings
Although the observed effects on growth and survival were relatively weak, a strong impact on reproduction was observed (50.70% inhibition in 100 mu g/kg of E-2). We further demonstrated that the exposure of the earthworm Eisenia fetida to a contaminant of emerging concern, 17 beta-oestradiol (E2), significantly affected the molecules involved in antioxidant defence. Exposure to E2 results in the production of reactive oxygen species (ROS) and the stimulation of antioxidant systems (metallothionein and reduced oxidized glutathione ratio) but not phytochelatins at both the mRNA and translated protein levels. Matrix-assisted laser desorption/ionization (MALDI)-imaging revealed the subcuticular bioaccumulation of oestradiol- 3,4-quinone, altering the levels of local antioxidants in a time-dependent manner.
Conclusions/Significance
The present study illustrates that although most invertebrates do not possess oestrogen receptors, these organisms can be affected by oestrogen hormones, likely reflecting free diffusion into the cellular microenvironment with subsequent degradation to molecules that undergo redox cycling, producing ROS, thereby increasing environmental contamination that also perilously affects keystone animals, forming lower trophic levels.
Keywords
DISRUPTING COMPOUNDS, METALLOTHIONEIN, WATER, PHARMACEUTICALS, CONTAMINANTS, EXPRESSION, HORMONES, SOILS, OLIGOCHAETA, POLLUTANTSPersistent identifier
http://hdl.handle.net/11012/63710Document type
Peer reviewedDocument version
Final PDFSource
PLOS ONE. 2015, vol. 10, issue 12, p. 1-17.http://europepmc.org/articles/PMC4690593?pdf=render
Collections
- Chytré nanonástroje [301]