Activation Process of ONU in EPON/GPON/XG-PON/NG-PON2 Networks

Loading...
Thumbnail Image
Date
2018-10-16
ORCID
Advisor
Referee
Mark
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Altmetrics
Abstract
This article presents a numerical implementation of the activation process for gigabit and 10 gigabit next generation and Ethernet passive optical networks. The specifications are completely different because GPON, XG-PON, and NG-PON2 were developed by the International Telecommunication Union whereas Ethernet PON was developed by the Institute of Electrical and Electronics Engineers. The speed of an activation process is the most important in a blackout scenario because end optical units have a timer after expiration transmission parameters are discarded. Proper implementation of an activation process is crucial for eliminating inadvisable delay. An OLT chassis is dedicated to several GPON (or other standard) cards. Each card has up to 8 or 16 GPON ports. Furthermore, one GPON port can operate with up to 64/128 ONUs. Our results indicate a shorter duration activation process (due to a shorter frame duration) in Ethernet-based PON but the maximum split ratio is only 1:32 instead of up to 1:64/128 for gigabit PON and newer standards. An optimization improves the reduction time for the GPON activation process with current PLOAM messages and with no changes in the transmission convergence layer. We reduced the activation time from 215 ms to 145 ms for 64 ONUs.
Description
Citation
Applied Sciences - Basel. 2018, vol. 8, issue 10, p. 1-18.
http://www.mdpi.com/2076-3417/8/10/1934
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution 4.0 International
http://creativecommons.org/licenses/by/4.0/
Citace PRO