FDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blends

dc.contributor.authorMelčová, Veronikacs
dc.contributor.authorChaloupková, Kateřinacs
dc.contributor.authorMenčík, Přemyslcs
dc.contributor.authorKontárová, Soňacs
dc.contributor.authorRampichová, Michaelacs
dc.contributor.authorHedvičáková, Věracs
dc.contributor.authorSovková, Věracs
dc.contributor.authorPřikryl, Radekcs
dc.contributor.authorVojtová, Lucycs
dc.coverage.issue12cs
dc.coverage.volume12cs
dc.date.accessioned2020-12-08T11:56:22Z
dc.date.available2020-12-08T11:56:22Z
dc.date.issued2020-11-27cs
dc.description.abstractTissue engineering is a current trend in the regenerative medicine putting pressure on scientists to develop highly functional materials and methods for scaffolds’ preparation. In this paper, the calibrated filaments for Fused Deposition Modeling (FDM) based on plasticized poly(3-hydroxybutyrate)/poly(d,l-lactide) 70/30 blend modified with tricalcium phosphate bioceramics were prepared. Two different plasticizers, Citroflex (n-Butyryl tri-n-hexyl citrate) and Syncroflex (oligomeric adipate ester), both used in the amount of 12 wt%, were compared. The printing parameters for these materials were optimized and the printability was evaluated by recently published warping test. The samples were studied with respect to their thermal and mechanical properties, followed by biological in vitro tests including proliferation, viability, and osteogenic differentiation of human mesenchymal stem cells. According to the results from differential scanning calorimetry and tensile measurements, the Citroflex-based plasticizer showed very good softening effect at the expense of worse printability and unsatisfactory performance during biological testing. On the other hand, the samples with Syncroflex demonstrated lower warping tendency compared to commercial polylactide filament with the warping coefficient one third lower. Moreover, the Syncroflex-based samples exhibited the non-cytotoxicity and promising biocompatibility.en
dc.formattextcs
dc.format.extent1-19cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPolymers. 2020, vol. 12, issue 12, p. 1-19.en
dc.identifier.doi10.3390/polym12122806cs
dc.identifier.issn2073-4360cs
dc.identifier.other166290cs
dc.identifier.urihttp://hdl.handle.net/11012/195767
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofPolymerscs
dc.relation.urihttps://www.mdpi.com/2073-4360/12/12/2806cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-4360/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectadditive manufacturingen
dc.subjectfused deposition modelingen
dc.subjectpoly(3-hydroxybutyrate)en
dc.subjectpolylactideen
dc.subjecttricalcium phosphateen
dc.subjectregenerative medicineen
dc.subjecttissue engineeringen
dc.subjectbone scaffoldsen
dc.titleFDM 3D Printed Composites for Bone Tissue Engineering Based on Plasticized Poly(3-hydroxybutyrate)/poly(d,l-lactide) Blendsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-166290en
sync.item.dbtypeVAVen
sync.item.insts2021.03.08 12:55:17en
sync.item.modts2021.03.08 12:15:30en
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Ústav chemie materiálůcs
thesis.grantorVysoké učení technické v Brně. Fakulta chemická. Centrum materiálového výzkumucs
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé biomateriálycs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Polymers_1202806.pdf
Size:
6.74 MB
Format:
Adobe Portable Document Format
Description:
Polymers_1202806.pdf