A Sequential Inverse Heat Conduction Problem in OpenFOAM

dc.contributor.authorBoháček, Jancs
dc.contributor.authorKomínek, Jancs
dc.contributor.authorVakhrushev, Alexandercs
dc.contributor.authorKarimi-Sibaki, Ebrahimcs
dc.contributor.authorLee, Tae-Woocs
dc.coverage.issue1cs
dc.coverage.volume1cs
dc.date.accessioned2022-06-09T14:52:04Z
dc.date.available2022-06-09T14:52:04Z
dc.date.issued2021-11-21cs
dc.description.abstractThe solution of the inverse heat conduction problem (IHCP) is commonly found with thesequential algorithm known as the function specification method with explicit updating formulas andsensitivity coefficients of heat flux. This paper presents a different approach namely a direct mathemat-ical optimization of minimizing the least squares norm between experimental data and simulation. ACFD open-source code OpenFOAM is used together with NLOPT and DLIB optimization libraries. Toguarantee credibility of the simulation tool developed herein, real experimental data is used from spraycooling of a fast-moving hot steel plate. As the IHCP is inherently an ill-posed problem, the proposedsequential algorithm is stabilized using future time stepping and thereof the optimal number is explained.An assumption about the profile of thermal boundary condition during future steps must be made. Itis shown that assuming a linear change of the heat transfer coefficient during each sequence of futuretime steps yields more accurate results than setting a constant value. For the problem size consideredwith less than 10k cells, the preconditioned conjugate gradient (FDIC) linear solver converges fasterthan the multigrid solver (GAMG). However, the latter performs better as the accuracy is concerned.Concerning the best choice of minimizer, the BOBYQA algorithm (quadratic approximation) is foundsuperior to other methods. The proposed IHCP solver is compared with the well-established one.en
dc.formattextcs
dc.format.extent27-46cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationOpen FOAM Journal. 2021, vol. 1, issue 1, p. 27-46.en
dc.identifier.doi10.51560/ofj.v1.33cs
dc.identifier.issn2753-8168cs
dc.identifier.other177544cs
dc.identifier.urihttp://hdl.handle.net/11012/204974
dc.language.isoencs
dc.publisherOpenCFDcs
dc.relation.ispartofOpen FOAM Journalcs
dc.relation.urihttps://journal.openfoam.com/index.php/ofj/article/view/33cs
dc.rightsCreative Commons Attribution-ShareAlike 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2753-8168/cs
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/cs
dc.subjectInverse Heat Conduction Problemen
dc.subjectheat transferen
dc.subjectspray coolingen
dc.subjectOpenFOAMen
dc.subjectoptimizationen
dc.subjectBOBYQAen
dc.titleA Sequential Inverse Heat Conduction Problem in OpenFOAMen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-177544en
sync.item.dbtypeVAVen
sync.item.insts2023.02.15 12:52:47en
sync.item.modts2023.02.15 12:14:31en
thesis.grantorVysoké učení technické v Brně. Fakulta strojního inženýrství. Laboratoř přenosu tepla a prouděnícs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Bohacek_2021.pdf
Size:
10.55 MB
Format:
Adobe Portable Document Format
Description:
Bohacek_2021.pdf