Multifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applications

dc.contributor.authorKhunová, Vieracs
dc.contributor.authorPavliňák, Davidcs
dc.contributor.authorŠafařík, Ivocs
dc.contributor.authorŠkrátek, Martincs
dc.contributor.authorOndreáš, Františekcs
dc.coverage.issue22cs
dc.coverage.volume13cs
dc.date.accessioned2021-12-07T15:54:09Z
dc.date.available2021-12-07T15:54:09Z
dc.date.issued2021-11-09cs
dc.description.abstractTubular halloysite (HNT) is a naturally occurring aluminosilicate clay with a unique combination of natural availability, good biocompatibility, high mechanical strength, and functionality. This study explored the effects of magnetically responsive halloysite (MHNT) on the structure, morphology, chemical composition, and magnetic and mechanical properties of electrospun nanofibers based on polycaprolactone (PCL) and gelatine (Gel) blends. MHNT was prepared via a simple modification of HNT with a perchloric-acid-stabilized magnetic fluid–methanol mixture. PCL/Gel nanofibers containing 6, 9, and 12 wt.% HNT and MHNT were prepared via an electrospinning process, respecting the essential rules for medical applications. The structure and properties of the prepared nanofibers were studied using infrared spectroscopy (ATR-FTIR) and electron microscopy (SEM, STEM) along with energy-dispersive X-ray spectroscopy (EDX), magnetometry, and mechanical analysis. It was found that the incorporation of the studied concentrations of MHNT into PCL/Gel nanofibers led to soft magnetic biocompatible materials with a saturation magnetization of 0.67 emu/g and coercivity of 15 Oe for nanofibers with 12 wt.% MHNT. Moreover, by applying both HNT and MHNT, an improvement of the nanofibers structure was observed, together with strong reinforcing effects. The greatest improvement was observed for nanofibers containing 9 wt.% MHNT when increases in tensile strength reached more than two-fold and the elongation at break reached a five-fold improvement.en
dc.formattextcs
dc.format.extent1-15cs
dc.format.mimetypeapplication/pdfcs
dc.identifier.citationPolymers. 2021, vol. 13, issue 22, p. 1-15.en
dc.identifier.doi10.3390/polym13223870cs
dc.identifier.issn2073-4360cs
dc.identifier.other173237cs
dc.identifier.urihttp://hdl.handle.net/11012/203102
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofPolymerscs
dc.relation.urihttps://www.mdpi.com/2073-4360/13/22/3870cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/2073-4360/cs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectmagneticen
dc.subjecthalloysiteen
dc.subjectnanotubesen
dc.subjectnanofibersen
dc.subjectbiopolymeren
dc.subjectpolycaprolactoneen
dc.subjectgelatineen
dc.subjectelectrospinningen
dc.titleMultifunctional Electrospun Nanofibers Based on Biopolymer Blends and Magnetic Tubular Halloysite for Medical Applicationsen
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen
sync.item.dbidVAV-173237en
sync.item.dbtypeVAVen
sync.item.insts2021.12.20 12:54:01en
sync.item.modts2021.12.20 12:14:19en
thesis.grantorVysoké učení technické v Brně. Středoevropský technologický institut VUT. Pokročilé polymerní materiály a kompozitcs
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
polymers1303870v2.pdf
Size:
41.18 MB
Format:
Adobe Portable Document Format
Description:
polymers1303870v2.pdf