Bio-AFM exploits enhanced response of human gingival fibroblasts on TiO2 nanotubular substrates with thin TiO2 coatings

Abstract
The present work studies anodic TiO2 nanotube (TNT) layers and their surface modifications for enhancing the cell behavior of human gingival fibroblast cells (hGFs) with the contribution of bio-AFM (Atomic Force Micro-scopy) method. TNT layers, prepared via electrochemical anodization of Ti, with an average tube diameter of 15, 30, and 100 nm, were used as primary substrates for the study. Flat Ti foils were used as reference substrates. Part of the substrates was coated by ultrathin TiO2 coatings (approximate to 0.3 nm thin) using Atomic Layer Deposition (ALD). The cell growth and adhesion of hGFs on the TNT layers and Ti foils were compared between ALD coated and uncoated ones. The supplemental coatings altered the surface chemistry of the TNT layers, particularly shading the fluorine and carbon impurities within anodic TiO2, while preserving the original structure and morphology. The presented approach of very mild surface modification remarkably effects the material's biocompatibility and possess great prospect as implant materials. For the first time, the TNT/cell interface was investigated using bio-AFM in terms of Young's modulus, stiffness, cell adhesive force and roughness. Improved biocompatibility was studied in terms of increased cell viability, density, cell cytoskeleton orientation and overall stiffness of the hGFs.
Description
Citation
Applied Surface Science Advances. 2023, vol. 18, issue 1, 12 p.
https://www.sciencedirect.com/science/article/pii/S2666523923000934?via%3Dihub
Document type
Peer-reviewed
Document version
Published version
Date of access to the full text
Language of document
en
Study field
Comittee
Date of acceptance
Defence
Result of defence
Document licence
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
Citace PRO