Show simple item record

dc.contributor.authorIlgner, Petrcs
dc.contributor.authorČíka, Petrcs
dc.contributor.authorŠtůsek, Martincs
dc.date.accessioned2021-10-15T14:57:19Z
dc.date.available2021-10-15T14:57:19Z
dc.date.issued2021-10-13cs
dc.identifier.citationSENSORS. 2021, vol. 21, issue 20, p. 1-20.en
dc.identifier.issn1424-8220cs
dc.identifier.other172781cs
dc.identifier.urihttp://hdl.handle.net/11012/201785
dc.description.abstractRecent developments in massive machine-type communication (mMTC) scenarios have given rise to never-seen requirements, which triggered the Industry 4.0 revolution. The new scenarios bring even more pressure to comply with the reliability and communication security and enable flawless functionality of the critical infrastructure, e.g., smart grid infrastructure. We discuss typical network grid architecture, communication strategies, and methods for building scalable and high-speed data processing and storage platform. This paper focuses on the data transmissions using the sets of standards IEC 60870-6 (ICCP/TASE.2). The main goal is to introduce the TASE.2 traffic generator and the data collection back-end with the implemented load balancing functionality to understand the limits of current protocols used in the smart grids. To this end, the assessment framework enabling generating and collecting TASE.2 communication with long-term data storage providing high availability and load balancing capabilities was developed. The designed proof-of-concept supports complete cryptographic security and allows users to perform the complex testing and verification of the TASE.2 network nodes configuration. Implemented components were tested in a cloud-based Microsoft Azure environment in four geographically separated locations. The findings from the testing indicate the high performance and scalability of the proposed platform, allowing the proposed generator to be also used for high-speed load testing purposes. The load-balancing performance shows the CPU usage of the load-balancer below 15% while processing 5000 messages per second. This makes it possible to achieve up to a 7-fold improvement of performance resulting in processing up to 35,000 messages per second.en
dc.formattextcs
dc.format.extent1-20cs
dc.format.mimetypeapplication/pdfcs
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofSENSORScs
dc.relation.urihttps://www.mdpi.com/1424-8220/21/20/6793cs
dc.rightsCreative Commons Attribution 4.0 Internationalcs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectIEC 60870-6en
dc.subjectTASE.2en
dc.subjectsmart griden
dc.subjecttraffic generatoren
dc.subjectApache JMeteren
dc.subjectApache Kafkaen
dc.subjectSCADAen
dc.subjectMongoDBen
dc.subjectMicrosoft Azureen
dc.titleSCADA-Based Message Generator for Multi-Vendor Smart Grids: Distributed Integration and Verification of TASE.2en
thesis.grantorVysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií. Ústav telekomunikacícs
sync.item.dbidVAV-172781en
sync.item.dbtypeVAVen
sync.item.insts2021.11.17 12:54:06en
sync.item.modts2021.11.17 12:15:05en
dc.coverage.issue20cs
dc.coverage.volume21cs
dc.identifier.doi10.3390/s21206793cs
dc.rights.accessopenAccesscs
dc.rights.sherpahttp://www.sherpa.ac.uk/romeo/issn/1424-8220/cs
dc.type.driverarticleen
dc.type.statusPeer-revieweden
dc.type.versionpublishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Creative Commons Attribution 4.0 International
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International